Geosynthetics in Forestry Application

By Donald Lindsay, CEG, PE Engineering Geologist/Civil Engineer California Geological Survey

Presentation Outline

Background information on Geosynthetics. Look at examples of geosynthetics in Forestry Applications. \triangleright Review currently accepted design standards. \succ Where applicable, identify simplified design procedures to promote the use of geosynthetics.

GEOSYNTHETICS KNOWLEDGE DESIGN STANDARDS

PRACTITIONERS RPFs LTOs REVIEW TEAM AGENCIES CDF DFG RWQCB CGS

Geosynthetics Defined

"Planar, polymeric material used with soil, rock, earth, or other geotechnical-related material as an integral part of an engineered project, structure, or system."

ASTM, 1994

Common Geosynthetics in Forest Applications

Geotextiles

Geocells

Common Geosynthetic functions in Forest Applications

Separation
Filtration
In-plane Drainage
Reinforcement
Protection/Cushion
Fluid Barrier

Separation

Filtration

Wrapped aggregate drains

Filter fabric

Geocomposites

In-Plane Drainage

Geocomposite

Reinforcement

Geosynthetics increase soil shear resistance by increasing <u>tensional</u> and <u>passive resistant</u> <u>forces</u>.

Mechanics of Reinforcement

Friction between geosynthetic and soil	W S F	<u>GEOGRID</u> HIGH	<u>GEOTEXTILE</u> LOW
<u>Confinement</u> (Dilation)		HIGH	LOW to NA
<u>Extensibility</u> of geosynthetic	$\longleftrightarrow T_{max}$	LOW	HIGH

Confinement:

Dr. Jie Han, PE

GEOSYNTHETICS

Geogrids Geocells Geotextiles

Geocomposites

FUNCTIONS

Separation

Filtration

In-Plane Drainage

Reinforcement

FOREST APPLICATIONS

Forest Applications

 Erosion Control Systems
 Soft Subgrade Reinforcement and Separation
 Subsurface Drainage
 Reinforced Slopes

Fabric

Without fabric

h

Used instead of graded granular materials in hard armor structures such as:

- Beneath rock slope protection along stream channels and bridge abutments (separation, filtration)
- Beneath armor stone on cut and fill slopes (separation, filtration)

Clarkin K. et. al., 2006 (USFS)

 Used as scour protection in low-water stream
 Crossings (separation, reinforcement)

Geocell

Used to temporarily control and minimize erosion and sediment transport until vegetation can be established. Examples include:

Erosion control blankets and mats.

Ed Rose, USFS

Advantages:

Reduce the use of costly granular aggregate material.

Expedite construction.

Provide protection while promoting vegetation growth.

Disadvantages:
Additional time to place and workaround.
Use of improper geosynthetic for the given function and site conditions (oversight).
Improper installation (oversight).

Forest Applications

 Erosion Control Systems
 Soft Subgrade Reinforcement and Separation
 Subsurface Drainage
 Reinforced Slopes

Geosynthetic Materials Association

The cost to rock roads can be substantially lowered when the road has a soft, yielding subgrade.

- Achieved by providing three functions:
 - Reinforcement
 - Separation
 - Filtration (less common)

Soft Subgrade Reinforcement

FHWA HI-95-038

Soft Subgrade Reinforcement

Geogrid

Granular Fill Control Discond Discond

Subgrade

Tensar BX1200 supports continued traffic of fully loaded trucks. This section is immediately behind failed section on previous photo that did not have BX1200 reinforcement.

Tensar

Soft Subgrade Separation

Aggregate lost to weak subgrades

Advantages:

- Reduces stresses in subgrade (reinforcement).
- Prevents contamination of surface rock (separation, filtration).
- Reduces excavation of unsuitable subgrade materials (separation, reinforcement).
- Reduces the thickness of aggregate required to stabilize the subgrade (separation, reinforcement).
- Aids in compaction of surface rock (separation, reinforcement, drainage).
- Reduces maintenance and extends the life of the road surface (filtration, separation, drainage, reinforcement).

Disadvantages:

Price of geosynthetics? (about \$3/ft. road).

Use of improper geosynthetic for the given function and site conditions (specifications and/or oversight).

Forest Applications

Erosion Control Systems
Soft Subgrade Reinforcement and Separation
Subsurface Drainage
Reinforced Slopes

Subsurface Drainage

Geosynthetics can be used as a replacement for, or in conjunction with, conventional graded granular filters.

- ► Examples:
 - Geocomposite drains

 Wrapped aggregate drains (burrito drains, wrapped underdrains)

Geocomposite Drain

Ed Rose, USFS

Geocomposite Drain

Ed Rose, USFS

Precautions to prevent damage from construction:

Subsurface Drainage

Advantages:

Prevents fines from contaminating the drain rock while allowing water to pass (filtration).
 Allows for the use of less-costly drainage aggregate (separation, filtration).
 Expedites construction.

Subsurface Drainage

Disadvantages:

Use of improper geosynthetic for the given function and site conditions (specifications and oversight).
 Poor installation.

Accepted Design Procedure

- 1. Evaluate the critical nature of the application.
- 2. Obtain soil samples and perform necessary tests (gradation, hydrometer, Atterberg limits).
- 3. Determine the dimensions of the drain system.
- 4. Determine geotextile hydraulic requirments (retention, flow, clogging).
- 5. Determine geotextile survivability requirements.
- 6. Prepare Specifications.
- 7. Monitor Installation.

Adapted from FHWA HI-95-038

Table 3	-1. Geotextile Filter De	nsign Criteria.	
Protected Soil (Percent Passing		Permea	bility
No. 200 Sieve)	Piping ¹	Woven 1	Nonwoven ²
Less than 5%	AOS (mm) <0.6	POA ⁵ > 10	% k _> 5ks
	(mm) (Constant theorem #200		
	(Greater than #50 US_Standard		
	Sieve)		
5 to 50%	AOS $(mm) < 0.6$	POA > 4%	$\mathbf{k}_{\alpha} > 5 \mathbf{k}_{\alpha}$
	(mm)		0 0
	(Greater than #30		
	US Standard		
50 +n 9500	Sieve) $\Delta OS_{\rm (mm)} < 0.20$	7 POA > 4	$1 \sim 51$
30 10 6376	AOS (mm) ~ 0.29	/ FOA > 4	ೂ ಕ್ರ∽ು⊭ ₈
	(Greater than #50		
	US Standard		
	Sieve)		
Greater than 859	6 AOS (mm) < 0.297		k _a ≻5k s
	(<u>mm</u>)		-
	(Greater than #50 US_Standard		
	Sierre)		
	(active)		
¹ When the prote material retained	ected soil contains ap l on the No. 4 sieve u	preciable qui se only the so	antities of xil passing
the No. 4 sieve in the is the nermer	i selecting the AOS of ability of the permanent	the geotextile	and In in
the permeability of	of the protected soil	an geotextile	and K _S is
8 not - n	a a a		

' POA = Percent Open Area.

UFC 3-220-08FA 16 January 2004 UNIFIED FACILITIES CRITERIA (UFC) **ENGINEERING USE OF GEOTEXTILES**

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Geofabric

High porosity + High permeability = High flow for longer. High permeability but Percent open area (POS) is more prone to clogging.

Forest Applications

Reinforced Slopes

Geosynthetic-reinforced slopes allow the ability to construct slopes steeper than those constructed using more traditional means.

- Two common types of reinforcement:
 - Geogrid
 - Geotextile

CGL

Reinforced Slopes

Advantages:

- Allows for the use of on-site, native material rather then importing select material (reinforcement).
- Can eliminate the need for buttress elements such as rip-rap, k-rails, etc. (reinforcement).
- Reduces the area and volume of fills (reinforcement).
- Aids in compaction during construction (separation, reinforcement, drainage).
- Can stabilize large landslides by unloading the head, reinforcing the toe, and providing internal drainage (separation, reinforcement, drainage).

Reinforced Slopes

Disadvantages: Consultant fees for design. Use of improper geosynthetic for the given function and site conditions. Requires more complex construction techniques (keying, benching) and more stringent construction specifications (moisture conditioning, compaction).

CALIFORNIA GEOLOGICAL SURVEY

Accepted Design Procedure

- 1. Address cause of original failure.
- 2. Establish the geometric, loading, and performance requirements for design.
- 3. Determine the subsurface stratigraphy and the engineering properties of the natural soils.
- 4. Determine the engineering properties of the available fill soils.
- Establish design parameters for the reinforcement (design reinforcement strength, durability criteria, soilreinforcement interaction).
- 6. Determine the factor of safety of the unreinforced slope.
- 7. Design reinforcement to provide stable slope.
- 8. Check external stability.
- 9. Evaluate requirements for subsurface and surface water control.

FHWA HI-95-038

CHART PROCEDURE:

1) Determine force coefficient K from figure above, where $\phi_r =$ friction angle of reinforced fill:

$$\phi_f = \tan^{-1}\left(\frac{\tan \phi_r}{FS_n}\right)$$

Determine:

where:

٠

 $T_{S-MAX} = 0.5 \text{ K } \gamma_r (\text{H}')^2$ H' = H + q/\gamma_r

q = a uniform load

3) Determine the required reinforcement length at the top L_T and bottom L_B of the slope from the figure above.

LIMITING ASSUMPTIONS

- Extensible reinforcement.
- Slopes constructed with uniform, cohesionless soil, c = 0).
- No pore pressures within slope.
- Competent, level foundation soils.
- No seismic forces.
- Uniform surcharge nor greater than 0.2 γ, H.
- Relatively high soil/reinforcement interface friction angle, φ_{sg} = 0.9 φ_r (may not be appropriate for some geotextiles).

Figure 8-6 Sliding wedge approach to determine the coefficient of earth pressure K (after Schmertmann, et al., 1987). NOTE: Charls * The Tensar Corporation.

Figure 15—Required force vs. slope distance.

	C/ Gr	ASE 1a -	45° Ma	ximum Slope A Reinforced So	ngle, 11 Fill					
Max. Slope	Reinforced Soll Fill Friction	Minimum Reinforcement	So	Primary II Reinforcement	Maximum Siope Height	Zor	Zone 1 Zone 2		lone 2	
Angle (degrees)	Angle (degrees)	(m)	Туре	Long Term Strength (Tal) (kN/m)	(m)	H1 (m)	S1 _{mox} (m)	H2 (m)	S2 _{mox} (m)	
			Turne T	10	8.0	3.5	1.0	4.5	0.5	
		1	TYPE 1	10	8.0	8.0	0.6	-	-	
45	30	1.1 H	Type II	15	8.0	6.5	1.0	1.5	0.5	
					8.0	5.4	1.2	2.6	0.6	
			Type III	20	8.0	8.0	1.2	-	-	
CASE 1b - Modified Select Gr Mox. Reinforced Soli Fill Reinforcement Friction		45° Ma anular	Borrow Reinf	orced So	Î Î F Î I I Zone 1		Zone 2			
Slope	Soll Fill Friction	Reinforcement	50	II Reinforcement	Slope Height					
MOX. Slope Angle (degrees)	Soll Fill Friction Angle (degrees)	Reinforcement Length, L (m)	Туре	Long Term Strength (Tol) (kN/m)	Slope Height (m)	H1 (m)	S1 _{max} (m)	H2 (m)	S2 _{mo>} (m)	
MOX. Slope Angle (degrees)	Soll Fill Friction Angle (degrees)	Reinforcement Length, L (m)	Туре	Long Term Strength (Tol) (kN/m)	Slope Height (m) 8.0	H1 (m) 8.0	\$1 _{max} (m)	H2 (m)	S2 _{mox} (m)	
MOX. Slope Angle (degrees)	Soll Fill Friction Angle (degrees)	Reinforcement Length, L (m)	Туре Туре I	Long Term Strength (Tol) (kN/m) 10	Slope Height (m) 8.0 8.0	H1 (m) 8.0 5.4	S1 _{max} (m) 1.0 1.2	H2 (m) - 2.6	S2 _{mox} (m) -	
MOX. Slope Angle (degrees) 45	Soll Fill Friction Angle (degrees)	Reinforcement Length, L (m) 0.8 H	Type I Type II	Long Term Strength (Tal) (kN/m) 10 15	Slope Height (m) 8.0 8.0 8.0	H1 (m) 8.0 5.4 8.0	\$1 _{max} (m) 1.0 1.2 1.2	H2 (m) - 2.6	S2 _{mox} (m) - 0.6	

SECONDARY REINFORCEMENT SHALL HAVE A MINIMUM LONG TERM STRENGTH OF 6 KN/m.

FHWA HI-00-043

Challenges of Simplified Design

Assessment of on-site materials.
Assessment of Global Stability.
Accountability that the work was performed as designed. Needs oversight by designer or designee.

Evaluating the appropriateness of the proposed repairs.

Developing Soil Strengths

LABORATORY CLASSIFICATION CRITERIA												
$C_{u} = \frac{D_{60}}{D_{10}} \text{ greater than 4; } C_{c} = \frac{D_{30}}{D_{10} \times D_{60}} \text{ between 1 and 3}$												
GP	Nat r	meeti	ng all	grada	ation r	equir	emer	its for	GW			
GM	Atter line	rberg ar P.I.	limits Iess	belov Than 4	v "A" 4	A	bove '	'A'lin Arek	ie wit	h P.L.	belwe	en
Afterberg limits above "A" line with P.I. greater than 7												
SW $C_u = \frac{D_{60}}{D_{10}}$ greater than 4; $C_c = \frac{D_{30}}{D_{10} \times D_{60}}$ between 1 and 3												
SP Not meeting all gradation requirements for GW												
SM Atterberg limits below "A" Limits plotting in shaded zone line or P.I. less than 4 with PI. between 4 and 7 are												
SC Atterberg limits above "A" line with P.I. greater than 7												
Determine percentages of sand and gravel from grain-size curve. Depending on percentage of fines (fraction smaller than No. 200 sieve size), coarse-grained soils are classified as follows: Less than 5 percent												
PLASTICITY CHART												
60												
(%) (J	50											
EX (P	40	<u> </u>						СН	A	LINE:		
	30				CL			MH2	4 = 0. SOH	73(LL	20)	
TICIT	20					\checkmark						
PLAS	10	<u> </u>	CL+NL		ML&	OL						
	0	0 1	0 2	0 3	0 4	0 5	0 6	0 7	08	0 9	0 10	00

LIQUID LIMIT (LL) (%)

Table 5.5—Reported values of γ_d , C'_s and ϕ' for silts, sands, and gravels

USC	$\% D_r$	γ_d,\mathbf{pcf}	C'_s , psf	$\phi', \deg.$
GW loose			i na si pana s Kasilari sa 19	
	0-35	* 3	0	35-38
	"	118-128	Ó	28-33 5
	0	98-111	0	36.3-39.3
GW mediun	n-dense		Anna ann iorrainn	na na n
	35-65	ana ang sa	0	38-41
	"	128-135	0	33 5-38 5
	58	127	0	38.4-39
GW dense t	o very dense	inne an an an Arthur		
	65-100	19 * 10 10 10 10 10	0	41-45
	1 1 P	135-145	Ō	38 5-45
	49 1927 - 1927	125-135	Ō	> 38
	*	119.5-137	0	39-46
	70	123-125.4	790-1140	38.0-41.4
GP loose				
	0-35	•	0	33-36
	an n a tanan	108-118	0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	27.5-32.5
GP medium	-dense	a data da ante da ante	na na hara	
	35-65	*	0	36-39
	n n n n n n n n n n n n n n n n n n n	118-124	0	32 5-37
	50	117-122	288-432	38.7-40.4
GP dense to	very dense			
	65-100	*	0	39-43
	"	124-134	0	37-42.5
		115-125	0	> 37
	***	111-124	0	38-42
	70	126.5	432	40.4
	90	129.1	432	44.4
		يت المحمد أن وحال متعاد تعربون وعاد		
GM loose				
GM loose	0-35		0	33-36
GM loose	0-35 0	* 114	0 *	33–36 *

Forestry Technical Rule Addendum No. 1

TRA#1
Sand =
Sandy loam =
Loam =
Silt loam =
Clay loam =
Clay =

<u>USCS</u> SW-SP SC-SM SC-SM ML CL-ML CL-CH

Summary

Erosion Control Systems

• Training.

Easy access to available information.

Soft Subgrade Reinforcement and Separation

- Training.
- Easy access to available information.

Summary

Subsurface Drainage

- Training.
- Easy access to available information.
- Simplified design guidelines.

Reinforced Slopes

- Training.
- Easy access to available information.
- Simplified design guidelines.

QUESTIONS?

